Skip to main content

execute

Processes a given image through a specified neural network.

Alias for upscale.

Example

const upscaler = new Upscaler();
const image = new Image();
image.src = '/some/path/to/image.png';

upscaler.execute(image, {
output: 'base64',
patchSize: 64,
padding: 2,
progress: (progress) => {
console.log('Progress:', progress);
},
}).then(enhancedSrc => {
console.log(enhancedSrc);
});
Defined in upscaler.ts:135

Parameters

  • image: Input - The image to enhance
  • options: - A set of enhancing arguments.
    • signal?: AbortSignal - Provides a mechanism to abort the warmup process. For more, see the guides on cancelling requests.
    • awaitNextFrame?: boolean - If provided, upscaler will await tf.nextFrame() on each cycle. This allows enhancement operations to more often release the UI thread, and can make enhancement operations more responsive to abort signals or.
    • output?: base64 | tensor - Denotes the kind of response UpscalerJS returns - a base64 string representation of the image, or the tensor. In the browser, this defaults to "base64" and in Node.js, to "tensor".
    • patchSize?: number - Optionally specify an image patch size to operate on. For more, see the guide on patch sizes.
    • padding?: number - Optionally specify a patch size padding. For more, see the guide on patch sizes.
    • progress?: Progress - An optional progress callback if execute is called with a patchSize argument. For more, see the guide on progress callbacks.
    • progressOutput?: base64 | tensor - Denotes the kind of response UpscalerJS returns within a progress callback.

Returns

Promise<Tensor3D | string> - an enhanced image.